Mineralization and Characterization of Composite Lyophilized Gelatin Sponges Intended for Early Bone Regeneration.
نویسندگان
چکیده
The application of freeze-dried gelatin sponges as alternative bone grafting substitutes has many advantages, including the ability to swell, high porosity, tailorable degradation, and versatility to incorporate multiple components such as growth factors and nanofillers. The purpose of this study was to mineralize (M) and further characterize 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) cross-linked gelatin sponges enhanced with preparations rich in growth factors, hydroxyapatite, and chitin whiskers (PHCE). Sponges were characterized for their swelling and in vitro mineralization potential, surface characteristics, protein release, mechanical properties, and MG-63 cell attachment and infiltration. All sponges swelled up to 50% of their original volume upon hydration. Scanning electron microscopy showed sparse mineral deposition for gelatin-M scaffolds while PHCE-M scaffolds exhibited more uniform mineral nucleation. Over 21 days, PHCE-M scaffolds cumulatively released significantly more (30%) of its initial protein content than all other scaffolds. PHCE-M scaffolds reported lower modulus values (1.3-1.6 MPa) when compared to gelatin control scaffolds (1.6-3.2 MPa). Increased cell attachment and infiltration was noticed on PHCE and PHCE-M scaffolds. The results of the study demonstrate the enhanced performance of PHCE and PHCE-M scaffolds to serve as bone healing scaffolds. Their potential to release incorporated factors, comparable composition/mechanical properties to tissues developed in the early stages of bone healing, and enhanced initial cellular response make them suitable for further studies evaluating more complex cellular interactions.
منابع مشابه
A Preliminary Evaluation of Lyophilized Gelatin Sponges, Enhanced with Platelet-Rich Plasma, Hydroxyapatite and Chitin Whiskers for Bone Regeneration
The purpose of this study was to perform a number of preliminary in vitro evaluations on an array of modified gelatin gel sponge scaffolds for use in a bone graft application. The gelatin gels were modified through the addition of a number of components which each possess unique properties conducive to the creation and regeneration of bone: a preparation rich in growth factors (PRGF, a bioactiv...
متن کاملSynthesis and Characterization of Biodegradable Hemostat Gelatin Sponge for Surgery Application
Production and characterization of soft cross-linked gelatin sponge by using glutaraldehyde for blood hemostasis application, is the goal of this study. Biodegradable hydrogels were prepared through crosslinking of gelatin with glutaraldehyde followed by freeze drying. The effects of gelatin concentration, amount of crosslink agent and freeze drying temperature on mechanical properties and...
متن کاملOsteoinductivity Assessment of BMP-2 Loaded Composite Chitosan-Nano-Hydroxyapatite Scaffolds in a Rat Muscle Pouch
The objective of this study was to evaluate the osteoinductivity of composite chitosan-nano-hydroxyapatite scaffolds in a rat muscle pouch model. Previous in vitro characterization demonstrated the ability of the scaffolds to promote bone regeneration and as a carrier for local delivery of BMP-2. Composite microspheres were prepared using a co-precipitation method, and scaffolds were fabricated...
متن کاملDiamond Squid (Thysanoteuthis rhombus)-Derived Chondroitin Sulfate Stimulates Bone Healing within a Rat Calvarial Defect
Chondroitin sulfate (CS) has been suggested to be involved in bone formation and mineralization processes. A previous study showed that squid-derived CS (sqCS) has osteoblastogenesis ability in cooperation with bone morphogenetic protein (BMP)-4 in vitro. However, in vivo, osteogenic potential has not been verified. In this study, we created a critical-sized bone defect in the rat calvaria and ...
متن کاملCharacterization of CO3Ap-collagen Sponges Using X-ray High-resolution Mic rotom ograp hy Departments of Preventive Dentistry and 2Biomaterials Science, Hiroshima University School of Dentistry, 1-2-3 Kasumi, Minamiku, Hiroshima 734-8553, Japan
For reconstruction and regeneration of hard tissues, scaffold biomaterials with large size pores and high porosity are important, in addition to their roles as supporting frames. To develop a new biodegradable scaffold biomaterial, CO3Ap, which has crystallinity and a chemical composition similar to bone, was synthesized at pH 7.4 and 60 C. Then, the CO3Ap was mixed with a neutralized collagen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioengineering
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2014